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By Robert L. Nelson

SUMMARY

The linearized eqyations of motion have been derived for a rolling
missile having slight aerodynamic asymmetries. Time histories of rolltng-
missile motions referred to a body-axis system.have been prepared to show
the types of missile motions that can be encountered. The motions
resulting frm a trh change and a pulse-rocket disturbance are shown to
be determined mainly by the ratio of rolling velocity to pitching frequency.

l?inally,the derived equations are used in establishing a techniqpe for
the reduction of rolling-missile oscillation data. It is shown that the
aerodynamic derivatives can be obtained fran flight dati if four accelera-

1 tions are measured. The method is applied to the relmlts”obtained from a
flight test of a dssile configuration.

INTRODUCTION
I
1

The problem of the dynsmic stability
two separate basic treatments. First, in

of missiles
the case of

has been attackd by
roll-stabilized mis-

1

siles the problem has been attacked by means of the classical airplane-
I
I

stability theory developed by Manchester (ref. 1), with no need for motifi-
cations. The development of the theory for rolling symmetrical missiles I
has followed from the basic.ballistic theory of reference 2. Nicolaides
(ref. 3) snd Charters (ref. 4) have more ~ecently expressed the dynamic-
stability equations for rolling symmetrical missiles in terminology more I
familiar to the aerodynsmicist. However, the ~etus for these works was
provided by studies of missile motions in aerodynamic test ranges where the
model position ~d angular orientations were measured at a series of sta-
tions. As a result the equations derived were referred to space axes. M
the case of free-flight rolling missiles eqyipped with ‘internalinstrumen-
tation, the equations of motim mu@ be referred to a body-axis system.
Phillips in reference 5 presented a simplified analysis of the motion of
rolling airplanes (and in a limiting case of symmetrical missiles) based on
a body-axis system but included only the criteria for stabiti@. B-olzin
reference 6 derived more completely the equations-of motion for a rolling

1
.
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symmetrical missile referred to a body-axis system but ag&n discussed
only the criteria for stability.

In this paper the equations of motion referenced to the body-axis
system are again derived, and assumptions similar to those of Nicolaides
(ref. 3) are used. Some of the possible missile motions are shown,
together with the motions to be expected from certain furcing functions.
Finally, the derived equations of motion are used to establish a techni-
que for the reduction of oscillation daka to obtain aerodynamic deriva-
tives. The method is ap@_ied to the experimental results obtained from
a rolling symmetrical missile.

a

A,B, C

AF

cm

sYMeoIs

resultant acceleration

complex roots of differential.equation for ~

accelerations parallel to X, Y, and” Z axes,
respectively

constants of clifferential equation for ~ .

body frontal area, sq ft

%pitching-mament coefficient, —
qAFd “

.

%,=7—,sec
aap .

CN normal-force coefficient (-CZ)

I

#“

.

.

.
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.
,’ C* yawing-mment

&n
Cn =— “
pap”

ac
c~ = + 8’=

acn
c%= @&i’“C

a%
c%” = a(l+),~

CR _t@e of resultant vector

%

,

.

,

3

coefficient, %
qAFd

t

%,0

%-Cyp = ~

Cz

Cz,o

acz
c&=_

ilk

d

Fx> Fy> FZ

I

lateral-force

lateral-force

vertical-force

vertical-force

body diameter,

Fy
coefficient, —

qAF ●

coefficient due to asymmetry .

Fz
coefficient, —

qAF

coefficient due to asym&q

ft

aerodynamic forces “parallelto X, Y, and Z axes>
respectively

moment of inertia about Y- or Z-axis, slug-ft2

. .

1’=1 -~ sec2“
qAFd

.-. . . . . . . . . . . .. .. ____ _= ._ ... ..- ..- -. --— ------ —-—?——---------- —--—— -—...- .-_. ..—
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Ix

i =
r
-1

mament of inertia about X-axis, slug-ft2

k radius of gyration}

z ptie-rocket moment

J!w % % aerodynamic moments

m mass, slug

m’=m —, sec
qAF.

nI m, ft

arm from center of gravity, ft

about X, Y, and Z axes, respectively

pulse-rocket total impulse, lb-see .

rollingvelocity, radians/see

mcpress~e, l.b/sqft

initial msguitude of rotating vectors

slope

the

ccmponent of free-stream velocity in X-direction,
ft/sec (u-V)

free-stresm veloci@, ft/sec
.

coordinate axes

longitudinal center of pressure of asymmetric force, ft

longitudinal displacement of accelerometers,ft

lateral displacement of accelerometers,ft

vertical displacement of accelerometers,ft

.

.
.

.

#

4

#

t
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.
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a angle of attax, radians

\

.

#

#

1

P angle of sideslip, radians

i pitching velocity, radians/see

A ~ orientation of resultant vector, radians

A. ncmrolling dsmping constant, l#&ac

AA -* cpIIStant dueto roll, l/see “

P relative@ensi-@ factor, 4m
pAFd

VI>V2 initial ~ orientation of mutating vectors, radians

P air density, slugs/cu ft

4 rolling yelocity, radians/see

if yswing velocity, radisns/sec

~o basic oscillation frequency, radisns~sec

Al) ccmponent of total pitch frequency resulting directly
from roll, radians/see .

.
Dots over symbols indica@ time derivatives.

.

,

STATWENTOF THE PROBLEM

The motion of a symmetrical missile configurationreferred to a body.
axis system-iscomplicatedby rolling motion even for the case where the
rolling velocity is a fraction of the missile pitching frequency. Unlike
the motion of a slowly rolling airplane-~ configurationwhich ,ten@sto
continue in a direction normal to the wing plane, the motion of a symmetri-
cal missile configuration disturbed in one plane ‘in space tends to remain
in one plane in space. (The restoring force for the airpland is normal to
the plane of the wings, whereas the restoring force for the missile is

. . . . —.—.. .— ..- .__-. .- . . ..— . .. . . ___ -A --- --- --— ..-. - —. —L-.———.— ——— . . . . . . . _



6- NACA TN 3737

mainly independent of roll attitude.) Thus for a missile having acceler- , ~
meters mounted at the center of gravity the first consequence of the .
rolling motion is the appe~ance of a roll effect on the normal and $(

transverse accelerometer traces. An.exsmple of this effect for the normal- “
accelerometer trace is shown in the following sketch: ,

.
*

.

This roll effect is determined mainly by the ratio of the rolling
velocity to the oscillation freq~ncy, or the ratio of pd/2V to u@/2V. ‘ ‘

At very low values of pd/2V corresponding to very small fin misaline-
ments, this ratio can become large if the missile ascends to a high alti- =
tude, inasmuch as - pd/2V is independent of altitude while qd/2V

decreases with increasing altitude.

H the missile motion were in one plane in space and the roll rate
small, the motion could be analyzed simply by working with the resultant
of normal.and transverse acceleration, and applying the usual data- i
reduction techniques for oscillating nonrolling models (ref. 7). However, “ ‘
since the missile may not remain in one plane in space snd gyroscupic
cross-coupling can have a large effect on the model motion, an anslysis

1“

of the motions of rolling missiles 5.snecess~ in order to interpret
and reduce the fl&ght test data.

DEVELOPMENT

The linearized eauations

OF EQUATIONS OF MOTION

of motion for a symmetrical missile (90° :

rotational symetry) are referred to the body-axis system of the follti ng “
sketch:

. .

.
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On the assnrption that angular deviatiou from trim are small but
that large rolling velocity must be considered, the equati- of motion
reduce to

-.
a

.

9
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If the

/

1

forward velocity is ass-d to ~e constant

rolling veloci@
following four:

Ih order to reduce
are multiplied by
tivel.y,to obtain

.

also to be constant (~ = O), the

the

i =

IItu(B+$-ifa)=xFy

mu(LL6+j3j3)=zFz

iJ-(l-Ix)jkj=q

f“+(I-Ix)@=~

l!WA TN 3737

(~ = O) and the

equations reduce to the .

(1) “

(2) “

(3) ‘

(4)

tier of equations to two, equations (2) and (4)
@ and added to equations (1) and (3), respec-

.

IAC= fl+iu, Q= ~+i$, and$ = p so that time equations become:

●

.

() Ix X(MY + ~)
h+ipl-y$l= I

(5)

I

.

1

(6)

Allowing small asymmetries (resultingfrom a fixed control deflection for
example) which do not violate t- assumption of symetry and assmning that i
the aerodynamic forces due to ~, Cl,and ~, and forces due to gravity
sre negligible in comparison to the forces due to angle of attack and

.

.“

___ .—— ------— ———-— —-—— ——- -—-— .—. .-— .—. -
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sideslip permits the force eqyations to be written as:
#

EFZ = C4CAAP+ czo~AF

Then, multiplying the second equation by i and adding to the first gives

z(Fy+ m’z) (=qAF CYP~ + iC
&) (
a + qAF Cyo + iczo

).

llrom the assumption of symetry,

The derivative ~ rather than CyP or C% is used hereinafter, sfnce

the force due to appositive angle of attack is usually considered positive.
Then,

.

Z (Fy -I-iFz) = -~#~(13 + i~) + qAF(~o + iCZo)

Let m’ = ~; then, inasmuch
@F

%J Cyo + iczo
= -— +

m! m’

.

.

.----- .---------------- ---- ... ___ .------- ____ .... -.-— .. ..-—— ----- .. --4-- .--— .- —.- ---- -—- *
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If no moments
effects and if the
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.

from asymmetries.are.allowed to result from caiber
moments due to 0, $, and ~ are assumed to make a

‘).

I

significant contribution to the total moment, the mment equations can
be written as:

.,
.

“,

J@in, multiplying
the first gives

the

●

With the assumption of

..

‘. \
#

second of these eqyations by i and adding it to ‘

900 “ro&tioti Synunetry,

,.

.
.

*

,

“.

.

#
>:
,

J .. .*
—. .— -—”..-- — ----— —.-——-
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. .

.
.

.,

I

“.

.

.

,1 &
.

ic%(d + i$) -
1

(%. + iczo)?

. .

fiSO, with
.

Z(l’ly+ iklz)

I

Ww.tiom (5), (6), (7), and (8) c~i~ to give two kb.ear differentid.
equations in terms of the two unknowns ~ and Q. The following equa-

. tion in’ ~ results:

‘ where

.-
(9)

. .

cNa ~
A=

()

Ix
iiil--~+iP2-y

(10)

~“’-” ,_e .
4 ,...

u

B-k+ ic>p+p21- %+%%a-ip%-~-~%
. 1’ () I I! ~i

(m’ I’ I m’)1A — \—_____,—

c =-
l-l
A

“1
. .-.. (11)

.

..

,.
.’
,
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.

c = ~tti+ Rle‘V1 eat ‘V2 ebt
+ %!=

The solution of the differential equation is:

. .

‘4

where:

r-A+ A +4Ba=
2

.

b=-A
- ~A2 + 4B

2

,.

4“
,

.

#
ivl iv2

I and Rle and we are initial conditions as shown in the adjacent . ,.

sketch. 1

i’

. .
#

Both a and b are complex nunibers,with the ccmplex radical

A2 + 4B, and can be broken down into a more usable form to.

.“:...

i ,,
.

7

I

I
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.*
~=

,,. ” . a=&+ AA+i(~-AO) “
.

. -.1
. #

.4 ‘

where the new concepts
.

.

(13)

.?

expression can be

(16)

Mom the new eauations for a and b. the followiw. .. .,.
obtained:

.,

I or

.

>
.,

,
I

.

..
\

.,
t

.

.
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Inasmuch as a complex number represents a vector which can be expressed

in the form z=a+ib= Reie, where
R ‘epresenfi:s)-=: woffie&ctor and e gives the angular orientation, Rle

R2e(@)t
represent the dsmping with time of R1 and R2, respectively;

and (q - b)t+~ and (q+&jt-v2 give the location of the vet-

tors at any t-he. These”relationshipsare shown in the following sketch: “-

i(tx - Q&-h)
A

i-a

Thus, the resulting motion is givenby two damping vectors revolving in
different directions and at different rates about the fixed trim.

I

: . .

.

.

The time histories of CL and ~ csnbe obtained frcxnequation (17)

Wing the relations eie = cos e + i sin e and ~ = ~ + ia; then

(A&LSA)t
~e rCos (~ +

{

~ ~ e(~+m)t sin ~%

1“ [

(Ao-m)t
R2e

[ 1}sin (~ + Aw)t - V2 (18)

AfD)t + ~] +

1
ti)t - V2 +

i
-LuJt+v -

.

.
\

1“,

,,

#

,.

/-

.

.—. — .— - . ....
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and
&+AA)t – —

[P- Ptih=Rle-” - COS (%- Z!fN)t+ q] +

= ~le@&AA)t

a - %rti [
sin (~ -

1Cujt - v~

AD)t + Vq -

15

1&D)t - v~ (19)

or B ismadeupof twoThus the oscillation about trim of either u
sinusoidal componentswhich can have different initial magnit&s
(R~#R~) andwhichcand amps .tdifferentrates (AX #O). When AA

approaches the value of ~, one of the component oscillations dsmps

rapidly while the other component damps slowly.

Rather than use equations (18 ) and (19) in the discussion which
follows, use will be made of the resultant augle of attack from trim and
the angular orientation of this resultant. FYCUUequations (18) and (19)

‘ ‘(*)t
Rl e

2 2(&AX)t +
+~e

( )
2R1~e2bt cos 2~t + VI - V2 (20)

#wtANt
[

(A(rAA)t
Cos (* - 2m)t + ~] + I&

[ 1
Cos (~ + Al))t- v~

One interesting point should be made concerning equation (20). The roll
rate p appears as an important qpantity only in the quantity Ah, which
is small compared with & at low roll rates. Thus, to the first order,
a change in the rolling velocity will not influence the resultant
oscillation time history, but will only influence the sn@lar orientation

.

1

#
,

<’ ,
..— .. .. .. .— - ---- .------------- ,.. .-. —. . ...- . . ... .. .....-— . -. —--— “.- .-—.. . . . . . . . . . . . . . .



16 NACA TN 3737

. .

of the resultant. Therefore, the assumption that the rolling velocity is
constant may not be too strict a limitation on the validity of the

,*.

-is at low roll rates.

The sectioqs which folluw discuss the motions of rolling missiles \

referred to the body-axis system and a technique for reduction of data of *
missiles employing body-axis ~trwnen tation. In this system forces
measured at the center of gravi~ more conveniently describe the motion
than would the angle of attack, which cannot be measured at the center of
grawity and must be corrected to the center of gravity.

l?rm the assumption made earlier that aerodynamic forces due to 6, -
\

$, and @ ae negli@ble, the equations describing the force time his-
tories ~ffeq from derived equations only by a constant. If the forces
due to t3, v, and @ are not negligible, the new equations describing
the force time histories differ from equation (17) by the initial condi-
tions RI, ~, Vl, qnd v2.

.

In theequations and figures to follow, use is made of the synibols ,
as defined in the following table, for either angle-of-atta-blcand side-
slip instrumentationor for force-measuring instrumentation. The coeffi- .
ci~t CZ, which is positive downw=d, has been replaced by +. ‘

Epmbol I a and p system I ~ and ~ Syatam

% (9- 13&JJ2+ (CL- *)2 /(%-%,fJ.YiJn)2+“(%- %,mn)’

%- &=== &Y,t5=bn-‘d’+ (%,trim- %,0)2

A ~-la-%rim *-1 % - %,trim
3t-

$-P- % - cY,trlm

f%’im
~-l %,trim- %,0 -

Yc - %,trim- %,0

.

.

..

.

.

..— — . ...——. . .—..-—
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DISCUSSI~ OF THE DERIVED MOTION

In the discussion to fofiow, motion is intended to mean the missile
motion as reflected by the resultant angle-of-attack or resultant force ‘
time histories.

.

i

Rolling Trim,

-C/B, the rolling trim to
/ .

By use of the eqy@ion ~tti =

the nonrolling trim can be expressed

referenced

.
.

\“ as:
.

()
Ix 2

1 -“
()

_zL 4S2
Ix %

1.. -m
()%2

‘G
,

.

.

~ “*
.. . .

(22)
,.

.

%rim”- @trim)p~

,

(23)

.

.+ 1$)71-*)W
()XO+ %2
d~

(24)

.-

(25)
,,

.
\ .

“t,’

4
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18 NACA TN 3737

The quantities N and ~ are independent of the stability roots ~,

AX, ~, and Lm. ‘Inaddition, N and ~ are’independent of velocity:

and independent of lkch nwiber (if pd/2Vj ~, and ~/d are constant),

and N is influenced slightly by altitude &a&es (through the
~u term).

Same examples of rolling-trimmagnitude and orientation are given in
figures 1 and 2 for a partied.ar missile configuration. The assumed
aerodynamic and mass characteristicsHsted in the figures are representa-
tive of a four-fin missile of high fineness ratio. The resonant condition
at &/~ = tl iS shown in figure 1. An indication of the magnitude of

the rolling - at resonance for low values of dsmping is also shown.
~s~ds~s” tmt the - rotates *o@ 180° as the resonance range

.

,,

0
.

●

.

‘s

In order to give a better idea of the importance of the resonance range .
and the associated problem of avoiding resonance, the equations for ~/~ .
and &/~ are first written as follows:

o

(26) ‘

.-

,

(’7)

.

. .,
,

.

-“

—.. — —.
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Note that both eqpations (26) and (27) are functions of only the mass
characteristicsof the missile, the aerodynamic characteristics,and the
altitude (through the relative density factor) and are independent of. velocity, except indirectly through the effects of Mach nmiber and
Reynolds ntier on the aerodynamic derivatives.

.

Figure 3 shows the variation of &/~ and &D/~ with altitude

for a high-speed missile. The asymmetries causing the roll were accid-
ental and probably on the order of what can be expected Wth quality
construction of a finned missile. The curves show resonance reached at
an altitude of 93, ~ feet and at X@ = -0.022. passing through

resonance at such a high altitude may be objectionable;for, even though
the resultant force may be less than at a lower altitudey the greatly
increased trim angle of attack may be such as to put the missile in an
unstable angle-of-attack range, which could lead to destruction of the
missile or at least to a significant change in flight path. In addition,
if the flight path is such that resonance occurs near zenith, then the
resonance range will be passed through slowly and large changes in flight
path can occur. It may be that, for certain applications, the fins should
be deflected, so that resonance occurs at a predetermined low altitude.
Although the motion about trim is not greatly affected by changes in
rolling velocity at low roll rates, this result does not hold true for
the trim if changes in rolling velocity take place near roll resonance.

-. Mo*im About Trim#

Setting zero time at an,oscillation peak (V1 = V2) and replacing in
,

equations (20) and (21) the initial conditions Rl, ~, Vl, and V2 by

the following:
;,
.
...

CR,O =R1+~
“.

t

●

#

b
%

. yield the f~llowing simplified equations:
-.

}
.“●

,(

.. . . . .-. ..- —- —_ .. . . .. ..— -. . . . . . .. .. .. ~_. - ....-_ -. -- -.— .—. .- ..---— _
1



20 NACA TN 3737 ‘

A

A better
obtained

.

.~.~+~-l(l+K)#t-(l-K)e*t tan q)t (29)
(1 + K)@t + (1 - K)eat

insight intothephysical significance of the quantity K is
from the equation for dA/dt:

a . %~1+K)2e~t -
(1 - K)2e-*t] + 2(1 - K?)& sin at

-AD
at (1 + K)2ent + (1 - K)2e-Wt + 2(1 - K?)cos ~t

. (30)

At t=O

( )-

~~t=o= @-&l (31)

!I!he value of K is thus related to dA/dt at t = O. Now the motion ‘ “
about ~ referred to an @s system in space, which translates, pitches,
and yawa with the body-axis system but does not roll, is related to the
motion with respect to a body-axis system by the following equations:

.

L*Jspace= (a)bo~axes ~ ~ -

%pace = ~ody

since the body-axis system rotates at
in space is determined by the initial
t o.= Also>

~es + Pt

the roll rate p. Thus, the motion
conditions & and dA/dt at

()%pace IX

at ~
.~++py

Ix
For values Of ~Py that are small

K
()

1 %pace=——
% at t=o

,

.t

.-. ..— —- ——- ——— ——— ..— .—
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Also, for the condition of zero roll rate (p = O),

!mus, fromthis, the motion

=*(=)$3=*(=)%o

2) +

frmn trim in space is nearly independent of
the roll rate at low roll rates and low ~ues of I@; Since the

motion in space is determined mainly by the value of K, the quantity K
is called the “space-motionfactor”.

Figures 4 *d ~ present some Qpical motions about trim (~ against

A with time varied) given by equations (28)and (29)forvqriablevalues
of K and Am/~ and for zero damping (~ and AX = O). The effect of

~ on the patterns is ma@ to reduce succeeding peaks. The effect of

& is discussed in a stisequent section. The nuniberof cycles to cqn-
plete the pattern are also shown.

.
Some of the important characteristics of the motions shown in fig-

ures 4 and 5 sre as follows:

(1) For Ax/M = O, or for the nmtion in space, the pattern is

elliptical, varying from a line (motion in one plane) for K = O to a
circle for K = *1 ●

(2) Whether K is positive or negative can be easily detected,
for CR circles the trti center for negative values of K, but does not
for positive values of K.

(3) An indication of the approach of resonance is shown by the
tendency for the loops to close on each other and become coincident for
a given value of K.

(h) Whether the missile is above or below roll.resonance is imme-
diately determined, since the motion above reso-ce is characterizedby
inside loops, and the motion bel-m roll resonance by outside loops.

(!5) ~orderto determine the value of thero~trimfra a plot
of CN against Cy, a low value of K is desirable.

w indicated, a plot of CN against Cy (or CR ~~t A) tiu

yield imnediatel.yvaluable information about the motion.

.

. .
...— --- .. -—.- . ---- —.. . .. .. . .— . -. —. .—— —-— — — .. . ..-. —— .— .— --—--—
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Ro13hg influences the dsmped motion through the term AX. FYom
equation (28) the envelopes of @ are:

~,~ _ ebt
[ 1~ (1 + K)emt + (1 - K)e4

CR,O

%,min ebt

%,0 [ 7
= ~ (1 + K)e*t - (1 - K)eA

(32)

(33)

Typical oscillation envelopes of ~ below divergence (AA< ~) are

shown in figure 6. The figure shows that the effect of an increase in AA
tends to - & oSCilktiOn of CR mOre ~~, eXCept for poSitive

values of K. For positive values of K the oscillation becomes less
-d ‘ifi ~ tirease h ~/&, W to the t- where CR,~n = 0. ~t

with further increases in time, the oscillation becmes highly damped.
Whether AA/& is positive or negative can be obtained from the following

equation for A?@:

For conventionalmissile configurations ~ ~ is negative and .

()
2$2

.

of greater magnitude than ~a; as a result fSA~ usually bas the ssme

sign as &D/q.

1
lx

Since the limiting magnitude of &o/~ is - m“ ~~
IY

w can be between +J, AA~ will &ver exceed *1, if

CNa - +%

()
,

.

-..——. —— —. —.. -—. .- ——. -—-. ——— . .-—. -.—- —— .—-- .————
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%~ is negative. However, a

instabili~ at hkgh roll rates

23

positive value of
%&

can lead to

or high altitudes, or both. However, the
instability resulting from a positive ~% will be serious onJy if it

occurs at altitudes where significant dynamic pressure exists, since the
rate of divergence is negligible at extremely high altitudes. Thus,
knowledge of the value of ~ is most impm%ant for missiles which

rolJ rapidly.

.
Another way of visualizing the effect of Ah on the motion is

obtained by finding the variation of K frcm peak to peak of the
oscillations or effectively setting the initial conditions and zero
time at succeeding peaks. Then, fr& equations (w) and (31),

Kt = (1 + K)@t - (1 - K)e*t

(1 + K)@t + (1 - K)e~t

Since

causes
Figure

the motion to tend toward that given by K = *1 in figure 5.
6 is in agreement with this concept. of course, at low roll rates

this trend is completely obscured since the oscillation is, for all prac-
tical purposes, damped out by the time the influence of AX is felt.

been
(and

RESPONSE OF ROLLING MISSILES TO FORCING FUN(HXONS

Thus far, motions resulting from variable initial conditions have
d$scussed. Remaining to be determined are the initial.conditions
as a result the motions) that can be expected from given disturbances.

Response to a Trim Change

Assume that, at the time of the instantaneous control deflection, the
missile was at
had completely
system at a -

I& initial trim and the
damped out. The initial
~~~ P - Btrti about

oscillation about this initi~ trim .
conditions are”referred to an axis
which the oscillation takes place,

. .
-. ..— .- ... . —--- . —-— ---— —-— —- -—— -- . - ----—- -— -- .-. — —-———— ‘—-
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as indicated on the fol.lowingsketch:

These conditions sre expressed by
J

where

‘R,trim = /(%,tXim)2‘(%,t~ - %,trim(%,-)o Cos %r&

= tan-l (%jt*)O ‘in %iUl,O - %,trim‘in ~r~
(%,tiilIl)O Cos %?jJn,O - %,t* Cos %r~

fhibstitutingthese initial
following &lues for Rl,

conditions into egyation (17) gives the

%, and V2 - Vl:

.

# .
—--- —. .. ..- —. ___ _________ .- ______ .. ___ _.______ ___
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.

% .I/(q - L!U3)2+ (~ + AA)2
‘R,trim 2~i

Neglecting AA gives as the ~ vd~ of CR, fr~ eq~tion (2O),

at the time W, which is given by

V2
*=

- VI

*

quantities

&=o

cR,max = ‘R,trim

compared with ~ and h.

.—-. —. ..- —— -—.. —.— ——— —
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The value for K is

Then, for Am< ~

R1-~
K=

RI + R2

K=&
@o ‘

‘=*
These results are plotted in figure 7. It

WA TN 3737

should not be inferred froq
five 7 that the value of ~,- increases with an increase in Am/~

above @m/~ . 1, since ~,- is referenced to Z!CR,~, which drops

off rapidly with an increase in Am/~ above &/~ = lZ as is shown in

figure 1. Note that, since the space-motion factor K and &/~ are of

the same sign, only the motion patterns for positive values of K in fig-
ures 4 and 5 exe.possible.

Response to Pulse-Rocket Distm$bahce ,

A free-flight missile can be ,convenientlydisturbed from its equi-
librium conditions by firing a small rocket charge mounted normal.to the
longitudinal.axts snd forward or rearward of the center of gravity. Such
a rocket charge is referred to as a ‘%ulse rocket.” For this simplified
analysis the rocket thrust is assumed to be constant. However the pulse-
rocket total impulse (are’aunder the curve of thrust plotted sgainst time)
and the pulse-rocket burning time, rather than pulse-rocket thrust, are
used as variables. By use of methods sidlar to those used in the section
“Development of Equations of Motion”, solutions have been obtained for the
pe~ value of CR and the value of K at the peak, for cases where the

peak CR occurs before rocket burnout and after rocket burnout. The .

..
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arepresentedin figures8 and9 forthespecialmse of zero
(~=o, AA= o).

Figure 8 shows the large effect the roll rate can have on the peak
value of ~, where ~ is indicative of the resultant angle of attack.
Figure 9 shows that the space-motion factor K rapidly approaches 1 at
a given pulse-rockt burning time, as Am/~ increases in magnitude.

Both figures show the desirability of a very low pulse-rocket burning
time, first in order to obtain a high peak ~ occurring after pulse-.

rocket burnout, and second in order to restrict the motion to nearly
one plane in space.

APPLICATIONOFEQUATIONS OFMOTICX’JTOEST.ABLISHMENT OFA
.

TECBNIQUE FORREDUCTIONOF OSCIILATIONIMTA

The procedure used in applying the equations of motion for the purpose
of reducing the oscillation data is presented in two parts. The first part
deals with the determination of the stability roots, ~, ti, ~, and

A, and the second part deals with a method for obtaining the static and

-c *ro_c derivatives from the stability roots. It is sh~ that
the derivatives c- be found by measuring four quantities in addition to
airspeed and atmospheric conditions. Of course.,the accuracy of the deriv-
atives obtained depends, to a large extent, on how well the assumptions
set down in the previous analysis are satisfied.

Determination of Stability Roots

Consider a rolling missile employing instrumentation at the center
of gravity for measuring the normal-force and side-force coefficients.
If the missile is disturbed in such a manner that the space-motion fac-
tor K is near zero and is out of the region of roll resonance so that
the trim does not wander in magnitude and direction, plots of ~ against

Cy (or CR .~ainst A) simil,arto those shown in figure 4 and 5 can be
obtained. A typical e~erimental plot is shown in figure 10. With the
lowvalues of K,

The quantity

adjacent peaks on

a fairly reliable trim center can be assumed.

@m/~ is readily found by measuring the angle between

the plot of ~ against ~. (See following sketch.)

.—.— ___ . ..— ——- --— --
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tq % - %T,trim

% - %,trim

This sketch can be used in conjun&tionwith

fk=Ao -@l

equation (29) to obtain

+Yt

t~) + 3t .

and since t2 and tl are measured at adjacent oscillation peaks

t@ l=&

and

&D_~ %-Al-—
% If . (35)

. Calculation of @m/~ for all adjacent oscillation peaks gives an indica-

tion of the validity of the assumption that the roll rate p is constant.
Also the accuracy of the calculated Am is affected by the correctness of .

.

...— . —.. - ——
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the assumed trim. The following table presents
2m/~ for the experhental plot of figure 10:

29

the calculated vlihleSof

.
.

Peaks Am/*

lto2 o.~1

2t03 .325

3t04 .282

4t05 .308

The small variation of M/~ upholds the assumption

stant roll rate.

With the trim center known, the time history of

of a nearly con-

CR2 can be obtained

fr~ theplotof cN S&&Mt cy. D? sufficient oscillations are present,

the damping envelopes about the oscillation peaks can be drawn with good
accuracy. Equations (32) and (33) represent the time histories of the
damping envelopes. If
can be written as:

%2= ~ ~R,max}2 +

use is && of--HE -“ing en%lopes, equation (28)

(CR,minfl + CR,$(l - K2)e2kt cos at (36)

2 is a sinusoidal damped oscillation about a~~ fr~ t~s equation, CR

trim given by
*[~)~)2’ (cR@JT

IYmn the period of oscillation ~

can be obtained.

~ log
2

.

From equations (32) and (33) and the damping envelopes,

~R,mx)2 - (cR,minfl = kt + Constant (37)

(& log %,IUX+ CR,min
2 cR,max - cR,min)

= at + constant (38)

... —-.-—- . . ..— ..—- .. ——— — —--—
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Figure 11 is a plot of CR2 obtained from figure 10. Except near

the end of the oscillation,where an error in the assumed trim would have
a large effect on time for-the
oscillation peaks appear quite
is used,

%=

oscillation peak, the periods measured at
good. E an average period of 0.280 second “

— = 1.1.20
0.:80

Two special.correctionswere also used in evaluating the dsmping A..

First, since the assumed trim msy not be correct, the error would appear

88 an oscillation in
*~!,-)2-+ ~R,minfi=

As a result, the periods

masured at points where the oscillation cuts ~&R,-)2 ‘(!,~.fi
would be inconsistent and differ from the periods measured at the peaks.
An indication of the trim error is given by this inconsistency of the

period. As a result an adjusted value of
*uR>~Y ‘~R,fifi has

been determined for each half cycle, such that the period is consistent
with the a$jacent peak periods. These adjustments to

*K!,-) + (%~)!l

.

sre indicated by the dashed Hnes. While this

correction is admitte&ly crude, it will provide a more nearly correct .
damping curve.

The second correction is in consequence of the high speed and the
flight path of this particular model. As a result, the air-density
change during this plotted oscillationwas significant. On the assumption
that the change in air density does not force the model oscillation, the
dsmping at any time during the oscillation (if the veloci@ change is
assumed negligible) can be written as

()k),t = A3,t=o &=

Then from equation (37)

~ )2 - (cR,min)~ = ~,~~(~).~ log CR,-

-- ..—. .— .
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Thus, this correction appears as a the adjustment. Figure 12 presents
the damping determined, including the effects of each correction. From
the slope of the lower plot in figure 12,

~ = -0.736

Because of the low roll.rate, AA is small and cannot be obtained from

figure 11, since (%,*)’ = c).

Determination of Aerodynamic Ikrivatives

lh’om Stability Roots

First, equations ue written for the differential accelerations at
. two points on the missile as measured by normal and transverse

accelerometers:

% = %(% Y2JZ2) - az(xl,Yl,zi)

(Y2 - Y1)F

These equations were derived under the ssme assumptions that were made in
the section “Developmentof Equations of Motion”. Stice MN = ‘tiZ/qAF

Lul day= m&iy/qAF,

----- .. . .. ..— . ..— ..-— — ——.”——— ——-— — . -.——— ——— --



NACA TN 3737

.

.

32

and
md(~ - xl)

%= ~
[1

%

1

●lX.
+l’@ye -

m(y2 - YI)@2

qAFd qAF

By use of equations (1) and (2),

If, then,

%=%a”+%vo>

f-y = %a$ + CY,o

% - %,o
a=

%a

(Cy - CY,0)
P =-

cNa

and

&_%l
%=

.

b=-:
a

.

. — -. —
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Then,.

.

,-

.

pd

[

cnPa ~——
- ~ CNa CNa

+

(39)

‘1 %+c%l 2 ~@2k2~%+
( )[

1’2Acy. —_ —__ —-—

()

~2d ( )() ]d CNa P ~a 2V z
d

Calstant +
#K%)[z$+@~+2+ a

2 Ix

() )

2 IX dNdz:

() ]}
&N +&y: —-—

CNa 1 2V
(40)

T& last bracketed terms
corrections that must be made

linear plots of ~ against

can make the correction large

of equations (39) and (40) represent the
tO MN and Ny in order to obtain

Cy. Note that the influence of the roll

even for low roll rates and small ratios
of IX to I. At high roll rates the correction may become greater than

the quantity to be determhed.” Figures 13 and 14 present experimental
plOts Of ACN sgainst CN and ACy against Cy. However, for simplicity
the points were tsken near the oscillation peaks (~ points neax

CN Acy points near Cy
peak’ )

Where ~ and ‘~y are negligible.
peak

Thus any corrections that must be made to the upper plots of figures 13
and 14 result entirely froq the rOll effeCt on MN and My. The effect

of rolling on curves of ACy against Cy (upper plot, fig. 13) makes the
!

curve appear nonlinear, whereas the effect on ~ plotted %*t ~ ,

(@per Plot, fig. 14) appears as an increase in scatter. The correction /
for roll given in the preceding equations by use of estimated derivatives ,$

.

—.— .—. . __ __ .— —— .- .—
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reduces the scatter and removes the nonlinesrities, as shown in the lower
plots of figures 13 and 14. The differences of 10 percent in slopes as
obtained in the ~ and Cy planes is not understood. The effect msy
be reai, resulting from different aeroelastic effects on the fins of the

. model, or be within the accuracy of the data.

Ths slope s of the curve of MN plottsd against ~ and ACy

against ~ is related to ~, Am, ~, and AA by the equation:

mu,

+7+-+AF +

For the test IEod.el,the necessary constants sre:

p = 76,600

~ = 8,1.20

Al? (42)

k = 2060
d

Ix
~ = 0.027

—..

.

.
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.

35

*

Then using the average of slopes from figures 13 snd 14 gives

CNa’= 0.0344 (~5.5 + 0.54 + O.*) = 4.35

Fran equation (13)

% = 2($)’&%+c%)
Then

-1

.

+ 4.35) =“ -1..29

.

Equation (41) can

~ = 13.5~(:::)(-0.736) + 4.351

~= 13.5(-13.90

te rewritten as:

~= -’(m)’

Then

u.$+1#-&

.

(43)

c%= -0.0156 (125.5 + O.% - 0.0023) - 0.w732

= -1.~- o.~ = -1.977

.. -—.. -— —.-. — -——-.—— . ——. --. —
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%% 1.977—= —=. — =
~N CNa k.35

With ~ snd
%

lnlown, the derivative
a

equation (~) and is given by:

-0.455

C%a
can be obtained from

(45)

AA
the

Avslueof ~ for the test model could not be determined, since
Pa

could not be determined with any accuracy at the low roll rates of
test.

It should be emphasized that the biggest drawback in obtaining good
accuracy is in failure to determLne the trim center correctly. In order
to obtain a reliable trim center, the missile should be disturbed in such
manner that K is small in magnitude, and the resonance range should be
avoided.

CONCLUDING REMARIW

~ analysis has been made of the motions of rolling missiles having
slight aerodynamic asymmetries. The motions were referred to a body axis
system. ‘Ihetype of motion encountered by the missile is shown to be
dependent on the ratio of the rolling velocity to pitching freqpency and
the manner in which the missile is disturbed. The equations of motion were
found to be useful in establishing a techniqye for the reduction of oscil-
lation data for rolling missiles having body-axis instrumentation. The
meth’6dwas applied to experimental results obtd.ned from flight tests of
a rolling missile configuration.

Langley Aeronautical Ikboratory,
National Advisory Committee for Aeronautics.

Langley Meld, Va.,my 1, 1956.
.
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Typical missile motions below rollresomdce for AD/%” pos-

For negative values of Aq/%, the sign of K is reversed.
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